Locality Preserving Semi-Supervised Support Vector Machine
نویسندگان
چکیده
Manifold regularization, which learns from a limited number of labeled samples and a large number of unlabeled samples, is a powerful semi-supervised classifier with a solid theoretical foundation. However, manifold regularization has the tendency to misclassify data near the boundaries of different classes during the classification process. In this paper, we propose a novel classification method called locality preserving semi-supervised support vector machine (LPSSVM) with an extended manifold regularization framework based on within-class locality preserving scatter. LPSSVM is good at exploring the underlying discriminative information as well as the local geometry of the samples as much as possible rather than merely relying on the smoothness information regarding manifold regularization. Meanwhile, benefiting from the geodesic distance metric, LPSSVM can more effectively reflect the true local geometry of data instances in the manifold space, which further strengths its accuracy in reality. The extensive comparisons with respect to LPSSVM and several state-of-the-art approaches were carried out on both artificial and real-word data sets. These experimental studies demonstrate the advantages as well as the superiority of our proposed method.
منابع مشابه
Manifold Learning for the Semi-Supervised Induction of FrameNet Predicates: An Empirical Investigation
This work focuses on the empirical investigation of distributional models for the automatic acquisition of frame inspired predicate words. While several semantic spaces, both word-based and syntaxbased, are employed, the impact of geometric representation based on dimensionality reduction techniques is investigated. Data statistics are accordingly studied along two orthogonal perspectives: Late...
متن کاملSemantic Concept Classification by Joint Semi-supervised Learning of Feature Subspaces and Support Vector Machines
The scarcity of labeled training data relative to the highdimensionality multi-modal features is one of the major obstacles for semantic concept classification of images and videos. Semi-supervised learning leverages the large amount of unlabeled data in developing effective classifiers. Feature subspace learning finds optimal feature subspaces for representing data and helping classification. ...
متن کاملAn Intelligent Credit Forecasting System Using Supervised Nonlinear Dimensionality Reductions
Kernel classifiers (such as support vector machines) have been successfully applied in numerous areas, and have demonstrated excellent performance. However, due to the high dimensionality and nonlinear distribution of financial input data in credit rating forecasting, finding a suitable low dimensional subspace by nonlinear dimensionality reductions is a key step to improve classifier performan...
متن کاملA Novel Support Vector Machine with Globality-Locality Preserving
Support vector machine (SVM) is regarded as a powerful method for pattern classification. However, the solution of the primal optimal model of SVM is susceptible for class distribution and may result in a nonrobust solution. In order to overcome this shortcoming, an improved model, support vector machine with globality-locality preserving (GLPSVM), is proposed. It introduces globality-locality ...
متن کاملManifold-preserving graph reduction for sparse semi-supervised learning
Representing manifolds using fewer examples has the advantages of eliminating the influence of outliers and noisy points and simultaneously accelerating the evaluation of predictors learned from the manifolds. In this paper, we give the definition of manifold-preserving sparse graphs as a representation of sparsified manifolds and present a simple and efficient manifold-preserving graph reducti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Inf. Sci. Eng.
دوره 31 شماره
صفحات -
تاریخ انتشار 2015